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DETERMINATION OF STATISTICS FOR ANY ROTATION OF AXES
OF A BIVARIATE NORMAL ELLIPTICAL DISTRIBUTION

SUMMARY

A method is presented for the determination of the estimates of
means, variances, covariances, and correlations for any rotation of axes
of a bivariate normal elliptical distribution. This problem arises in
connection with vehicle launches at Cape Kennedy, Florida, when winds
normal and parallel to the vehicle flight path are launch constraints.

A vector wind data sample is resolved into wind components in a rectangu-
lar coordinate system, and the bivariate normal elliptical distribution
theory is applied to the data sample of component winds. However,
theoretical inferences are required for any arbitrary firing azimuth of
the launch vehicle, This requires a rotation of axes of the bivariate
normal surface and the computation of new statistics after rotation,

I. INTRODUCTION

In 1846, Bravais [1] presented the theory of normal frequency dis-
tributions in two and more variables, Most modern statistical textbooks
include some discussion of such distributions, Outstanding contributions
are notable in the works of Bertrand [2], Czuber [3], Pearson {4],
Kluyver [5], and Student [6].

Further developments and some practical applications of these dis-
tributions with particular regard to geophysical problems are presented
by Crutcher and Baer [7], Crutcher and Moses [8], and Groenewoud, Hoaglin,
Vitalis, and Crutcher [9]. Anderson [10] and Hald [11] treat the subject
in general form. This report presents a method for the determination of
the estimates of means, variances; covariances, and correlations for any
rotation of axes of a bivariate normal elliptical distribution. Although
the procedure can be extended to the case for more than two variables,
this case #s not discussed here.

This problem arises in the determination of probabilities of success-
ful Taunches at Cape Kennedy, Florida. For example, winds exceeding some
given value normal and parallel to the flight path may be defined as
launch constraints, Those winds normal to the flight path are designated
as right and left cross winds, while those parallel to the flight path




are called head and tail winds, A vector wind data sample is resolved
into wind components in a rectangular coordinate system and the bivariate
normal elliptical distribution theory is applied to the data sample of
component winds, However, theoretical inferences are required for any
arbitrary firing azimuth of the launch vehicle, Making such inferences
requires a rotation of the axes of the bivariate normal surface and the
computation of new statistics after rotation,

II. THE BIVARIATE NORMAL ELLIPTICAL DISTRIBUTION

Let x, and X5 be normally distributed variables with parameters
(£1,0.) and (£s,05). &1 and Eo are the respective means,
while ¢4 and 0o are the respective standard deviations. Let p be the
correlation coefficient, which is a measure of the dependence between
x¢ and x5, Now, the equation of the two~dimensional normal density
function takes the form

2
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Given the variables x; and x5, we calculate the estimates of the
bivariate normal parameters, Denote the estimates as X, Xo, Sx1» Sx5»
and ry,x.. A special case of the problem described here is to
determine the estimates of the parameters where a rotation of the axes
through an angle (& reduces the correlation of components to zero, This
case is discussed in Crutcher and Baer [7], and Groenewoud, Hoaglin,
Vitalis, and Crutcher [9]. From the statistics in the (x;,Xs) space,
we must determine the statistics for any rotation of the axes through
an arbitrary angle & in the following way.

Let (y1,v2) be the new space after rotation with orthogonal axes
y1 and yao.

<
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= X; cos & + Xp sin ¢ gD

Yo = X5 cos @ - X4 sin @, (2)



where @ is the angle of rotation, and x; and X, are the original axes
along which the values of X; and Xs are measured, Denote the sample
variances of (Xi,x2) as Si and Si , respectively. The covariance of

(xl)xE’) is 1 2

T 5SS .
X1Xpo X1Xp X3 Xp

For the special case when S or r is equal to zero, the variance-
X1Xp2 X1Xp

covariance matrix is
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Setting the determinant of this matrix equal to zero and solving
for the two roots of the quadratic equation is essentially the rotation
of axes through an angle ¢ to where components along the new axes are
uncorrelated, Thus, the roots A; and Az are the variances along the
major and minor axes, respectively, of the bivariate distribution and
the covariances (correlations) are zero. From these data, variances
and covariances (correlations) along any set of new axes can be deter~
mined by rotating the axes from this basic position, Then the matrix
will be
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where the new space is (y,,y2) and y; and yo are the axes,.

_The statistics in the (yi,y2) space may be derived as follows: Let

?lﬁ Yo, s= , S , T be the means, variances, covariance, and
Y1t Y2 Yi¥2©§ Yi¥e
correlation coefficient in the (y;,y»2) space. Taking mathematical

expectations of equations (1) and (2), we have for the new means

Yy = X, cos a + X5 sin & (3)

¥ = X5 cos a - X; sin a. %)

]

Subtracting equation (3) from equation (1), we have
{Yl - ?l) = (Xl - il) cos ¢ + (X2 - }-(2) sin Q, (5)

and subtracting equation (4) from equation (2), we have

(Yo - ¥2) = (X5 - Xp) cos o - (X1 - X4) sin . (6)
Let
x; = (X3 - X1)
xo = (X2 - X2)
yi = (Y1 - Y1)

y2 = (Y2 - Y2)

be the deviations from the respective means. Now, equations (5) and
(6} become



X, cos O + X3 sin O (7)

yi

V2 = Xp cos O - X3 sin Q. (8)

Squaring equations (7) and (8) gives

2 2 . .
y1 = xi cos®Q + x5 sin®a + 2x1X5 cos O sin & (9
2 . .

Vo = x§ cosZa + xi sin®Q - 2%.X5 cos O sin Q. (10)

Now, taking expected values of equations (9) and (10), we have
for the new variances in the (y;,ys) space

S = 82 cos?x + S2 sina + 28 cos o sin o (11)
yi X1 X2 X1Xg2
and
S2 =382 cos®a + S2 sin®a - 2S cos ¢ sin Q. (12)
Y2 X2 X1 Xi1Xp
To derive the covariance, S , in the (y1,y2) space, we multiply

equation (7) by equation (8) and obtain
V1Ve = X1x5(cos®x - sin®0) + cos & sin a(xg - Xi), (13)

Taking the mathematical expectation of equation (13) gives the
covariance in the (yi,ys) space

S = 3 (cos®a- sin?x) + cos @ sin Q(8° - S Y. (14
Yi¥e XXz Xo Xy

Finally, the correlation coefficient in the (yi,ys) space is defined
as

- 57152
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Equations (3), (4), (11), (12), (14), and (15) give the required
estimates of the statistics in the (y,,ys) space.

A computer program whose input is the statistics in the (x;,x5)
space and any arbitrary angle of rotation of the bivariate normal sur-
face is available upon request. The output of the program includes
the required statistics in the (yi,y2) space.
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